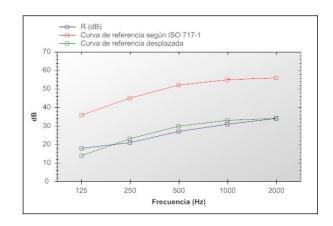


DATOS DE LA MUESTRA

Ancho (mm)	1000	1000 mm
Alto (mm)	700	
Apertura	Practicable	
Transmitancia térmica según DB HE del CTE (W/m²K) (Sólo para España)	5,8	
Transmitancia térmica según EN 10077	6,1	
Aislamiento acústico según UNE EN 12354-3 (dB)	Rw: 30 C: -1 Ctr: -4	700 mm

PRESTACIONES DE CADA MÓDULO

Módulo	Ventana abatible		
Ancho (mm)	1000		
Alto (mm)	700		
Composición	4		
Prestaciones del vidrio	Ug: 5,80 Rw: 29 C: -2 Ctr: -3		
Serie	2300		
Sección de marco (mm)	40		
Sección de hoja (mm)	48		
Espesor de perfilería (mm)	1,3		
Permeabilidad al aire según UNE EN 1026 y UNE EN 12207 *	4		
Estanqueidad al agua según UNE EN 1027 y UNE EN 12208 *	9A		
Resistencia a la carga de viento según UNE EN 12211 y UNE EN 12210 *	C5		
*Valores obtenidos en ventana de 2 hojas de dimensiones 1105 x 1210 mm.			



FICHA DE AISLAMIENTO ACÚSTICO

Sistemista	ALUMINIOS CORTIZO, S.A.	
Ancho de la muestra (mm)	1000	
Alto de la muestra (mm)	700	
Área de la muestra (m²)	0,70	
Descripción	Practicable	
Modelo	2300	
Fecha	08/08/2012	

Frecuencia (Hz)	R en dB de octavas
125	18
250	21
500	27
1000	31
2000	34

Índice global de reducción acústica según ISO 717-7	Rw: 30 C: -1 Ctr: -4
Índice global de reducción acústica, ponderado A, R _A	29 dBA
Índice global de reducción acústica, ponderado A, para ruido exterior de automóviles R _{Atr}	26 dBA

Evaluación basada en resultados obtenidos según EN 12354-3:2000 mediante un método de ingeniería. Para la obtención de los resultados se ha partido de ensayos realizados por Aluminios Cortizo, SA en sus instalaciones y horizon una característica de constancia en la calidad de la producción.

FICHA DE CÁLCULO TÉRMICO

CÁLCULO DE LA TRANSMITANCIA TÉRMICA SEGÚN DB HE DEL CTE (SÓLO VÁLIDO PARA ESPAÑA)

La transmitancia térmica de los huecos U_H (W/m²K) se determina mediante la siguiente expresión:

$$UH = (1 - F_M) \bullet U_{H,V} + F_M \bullet U_{HM}$$

siendo:

U_H = La transmitancia térmica en W/m²K.

F_M = La fracción de marco del hueco.

U_{H,V} = La transmitancia térmica del vidrio del hueco.

U_{HM} = La transmitancia térmica del marco del hueco.

Módulo	F _M	U _{H. V}	U _{HM}	U _{Hi}
Ventana abatible	0,21	F 80	5,7	5,78

$$U_{H}$$
 (W/m²K) = 5,8

CÁLCULO DE LA TRANSMITANCIA TÉRMICA SEGÚN EN 10077 (VÁLIDO PARA EUROPA)

La transmitancia térmica de un hueco Uw, se calcula como:

$$Uw = \frac{U_g \cdot A_g + U_f \cdot A_f + L_j \cdot \Psi}{A_f + A_g}$$

siendo:

 $A_f = La$ superficie en m^2 del marco.

U_g = La transmitancia térmica del vidrio del hueco en W/m²K.

U_f = La transmitancia térmica del marco del hueco en W/m²K.

 A_{α} = La superficie del vidrio en m².

L_i = Longitud de la zona de contacto del vidrio con el marco en m.

 ψ = Coeficiente asociado al tipo de marco.

Módulo	U _f	U _a	A_f	Α _α	Li	U_{w}
Ventana abatible	>5.7	5,80	0,15	0,55	3,03	6,08
	•		•	•	-	

$U_W (W/m^2K) = 6,1$

FICHA JUSTIFICATIVA DEL CÓDIGO TÉCNICO DE LA EDIFICACIÓN

1. Datos

Capital de provincia	Valencia	Altura sobre el mar	8
Desnivel	0	Zona climática	B3
% de huecos	0 a 10	Orientación	S
Reducción acústica exigida hueco	30	Tipo de edificio	Residencial y hospitalario (Dormitorios)

2. Verificación de cumplimiento

CARACTERÍSTICA	VALOR SEGÚN CTE	VALOR DE LA MUESTRA	CUMPLIMIENTO
Permeabilidad al aire	1	4	CUMPLE
Estanqueidad al agua	-	9A	CUMPLE
Resistencia al viento	-	C5	CUMPLE
Transmitancia térmica	5,70	5,78	NO CUMPLE
Aislamiento acústico	25,00	26,00	CUMPLE
Factor solar	-	0,68	CUMPLE

Pablo Sabarís Escudero

Valores obtenidos mediante el software de cálculo de Aluminios Cortizo SA, que ha sido validado por el laboratorio acreditado del Centro Tecnológico Cortizo. Los valores relativos a los vidrios y cajones de persiana se han de justificar mediante las correspondientes fichas técnicas. Los cálculos térmicos y acústicos realizados son una estimación de las prestaciones del hueco diseñado y el cumplimiento de la normativa técnica de edificación correspondiente. Los cálculos de los perfiles en cuanto a su resistencia mecánica y medidas máximas no están contemplados. Los valores de permeabilidad al aire, resistencia al viento y estanqueidad al agua están hechos sobre una muestra de referencia y el comportamiento real deberán ser ensayados o calculados. Las medidas máximas de los módulos deberán ser comprobadas mediante la documentación técnica suministrada por el sistemista.